Learning Summary Statistics for Approximate Bayesian Computation

نویسنده

  • Yiwen Chen
چکیده

In high dimensional data, it is often very difficult to analytically evaluate the likelihood function, and thus hard to get a Bayesian posterior estimation. Approximate Bayesian Computation is an important algorithm in this application. However, to apply the algorithm, we need to compress the data into low dimensional summary statistics, which is typically hard to get in an analytical form. In this project, I used Radial Basis Function network and Neural Network to learn the summary statistics automatically. I constructed a time series example and a hidden markov chain example, and I find that Neural network performs better.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Summary Statistic for Approximate Bayesian Computation via Deep Neural Network

Approximate Bayesian Computation (ABC) methods are used to approximate posterior distributions in models with unknown or computationally intractable likelihoods. Both the accuracy and computational efficiency of ABC depend on the choice of summary statistic, but outside of special cases where the optimal summary statistics are known, it is unclear which guiding principles can be used to constru...

متن کامل

Non-linear regression models for Approximate Bayesian Computation

Approximate Bayesian inference on the basis of summary statistics is wellsuited to complex problems for which the likelihood is either mathematically or computationally intractable. However the methods that use rejection suffer from the curse of dimensionality when the number of summary statistics is increased. Here we propose a machine-learning approach to the estimation of the posterior densi...

متن کامل

Approximate Bayesian Computation: a nonparametric perspective

Approximate Bayesian Computation is a family of likelihood-free inference techniques that are tailored to models defined in terms of a stochastic generating mechanism. In a nutshell, Approximate Bayesian Computation proceeds by computing summary statistics from the data and giving more weight to the values of the parameters for which the simulated summary statistics resemble the observed ones. ...

متن کامل

Local Kernel Dimension Reduction in Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is a popular sampling method in applications involving intractable likelihood functions. Without evaluating the likelihood function, ABC approximates the posterior distribution by the set of accepted samples which are simulated with parameters drown from the prior distribution, where acceptance is determined by distance between the summary statistics of th...

متن کامل

DR-ABC: Approximate Bayesian Computation with Kernel-Based Distribution Regression

Performing exact posterior inference in complex generative models is often difficult or impossible due to an expensive to evaluate or intractable likelihood function. Approximate Bayesian computation (ABC) is an inference framework that constructs an approximation to the true likelihood based on the similarity between the observed and simulated data as measured by a predefined set of summary st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015